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COMPACT OPERATORS IN BANACH LATTICES 

BY 

P. G. DODDS AND D. H. FREMLIN 

ABSTRACT 

Disjoint sequence methods from the theory of Riesz spaces are used to study 
compact operators on Banach lattices. A principal new result of the paper is that 
each positive map from a Banach lattice E to a Banach lattice F with compact 
majorant is itself compact provided the norms on E '  and F are order 
continuous. 

I. Introduction 

Compactness criteria for integral operators in various function spaces have 

been given by a number of authors. Let us cite the work of A. C. Zaanen [29] 

and T. And6 [1] in Orlicz spaces and of W. A. J. Luxemburg-A. C. Zaanen [13] 

and J. J. Grobler [9] in Banach function spaces. A related discussion is presented 

in the book of Krasnoselskii et al. [12] in the Lebesgue spaces. From a more 

abstract viewpoint, R. J. Nagel and U. Schlotterbeck introduce a class of kernel 

operators [20] on Banach lattices and, via a representation theorem for such 

operators, prove a compactness criterion in [21]. Full details of this approach are 

discussed in the book of H. H. Schaetfer [25]. 

In the present paper, it is our intention to use the framework of the theory of 

Riesz spaces (= vector lattices) to provide a systematic approach to the 

compactness criteria referred to above. Our method is to study the class of linear 

mappings which map order intervals of a Riesz space E to sets in a Riesz space F 

which are precompact for the I crl(F,F-) topology i.e. the topology on F 

determined by the family of Riesz semi-norms Ig I(l" I) for g ~ F- ,  where F -  is 

the Riesz space of order-bounded linear functionals on F. We call such mappings 

AMAL-compact. It is clear that the class of AMAL-compact maps between 

Banach lattices contain the compact mappings, and it is equally clear that each 

AMAL-compact map from an abstract M-space to an abstract L-space is 
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compact. In addition, it is not difficult to see directly that each kernel operator in 

the sense of Luxemburg and Zaanen is AMAL-compact, as are the kernel 

operators of Nagel and Schlotterbeck, as a glance at the definition in [20] shows 

readily. The principal result that we give concerning AMAL-compact operators 

is Theorem 3.4 which asserts that if F is a Dedekind complete Riesz space, and if 

each order-bounded linear functional on F is a normal integral, then the regular 

AMAL-compact maps from a Riesz space E to F form a band ( = solid, order 

closed sublattice) in the Dedekind complete Riesz space L-(E;F) of regular 

maps from E to F. Our proof of this fact is based on the spectral theorem of 

Freudenthal and is completely elementary. As such, it provides the key to 

avoiding the representation theory of [20] in the further study of compact maps 

on Banach lattices. 

The next task is to characterize those regular AMAL-compact mappings 

between Banach lattices which are compact. Our characterization is given in 

Theorem 5.3 and is formulated in terms of disjoint sequences. From another 

viewpoint, we show how the notions of L-weakly compact and M-weakly 

compact mappings, introduced by P. Meyer-Nieberg in [18], are related to 

compactness. Our compactness criterion for regular AMAL-compact operators, 

together with the fact that the regular AMAL-compact operators form a band 

containing the band generated by the compact maps, yields the earlier results of 

[21] and [13] as special cases. Perhaps one application is worth specific mention. 

We show that each positive map, from a Banach lattice E to the Banach lattice 

F, with compact majoront is itself compact provided the norms on E '  and F are 

order-continuous. This is stated separately in Theorem 4.5 and provided the 

stimulus for much of the present paper. 

It is natural to ask if the techniques used to study compactness of regular 

operators may be used in the same setting to discuss the related question of 

compactness for continuous maps on Banach lattices. To this end, we offer 

Theorem 5.5 as one characterization of compact maps between Banach lattices. 

This Theorem is suggested by related results in [12]. It is now convenient to 

consider the class of continuous maps which map (norm) bounded sets of the 

Banach lattice E to I tr I (F, F') precompact sets in the Banach lattice F, where F '  

now denotes the (Banach) dual of F. This class of mappings we call PL-compact. 

Our criterion for compactness is then formulated in terms of PL-compact 

mappings and disjoint sequences. A major technical tool used in these character- 

izations is a disjoint sequence theorem given in [3]. In section 2 of the present 

paper, we present a new result of this type and we remark that our techniques do 

not require assumptions of some restricted form of topological completeness. 
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As a final application of our results, we show how to derive certain theorems 

of And6 [1], Pitt [23] and Rosenthal [24] in the setting of Banach lattices with 

known indices. We must point out that the results of [24] are formulated for 

operators defined on subspaces of LP-spaces rather than on the LP-spaces 

themselves, and in this sense are stronger than, it would appear, can be achieved 

by the techniques to which we have chosen to limit ourselves. Nonetheless, we 

are inclined to the view that the direct order theoretic arguments of the present 

paper, which are entirely different to those used in [24], may not be entirely 

without interest. 

The setting for the paper then is the theory of Riesz spaces as outlined, for 

example, in [7], [15] or [25], and we shall occasionally use results from these 

sources without specific mention. 

Some of the results of this paper were announced at the Oberwolfach meeting 

on Riesz Spaces and Order-Bounded Operators in June, 1977. 

The authors would like to thank Peter Meyer-Nieberg for a preprint of [19], 

and wish to thank A. C. Zaanen, J. J. Grobler  and A. R. Schep for their 

comments on this paper and previous versions thereof. 

2. Disjoint sequences and approximately order-bounded sets 

In this section, we present some results concerning the behaviour of sequences 

of mutually disjoint elements in a general Riesz space. The principal result of 

this section, Theorem 2.5, gives a disjoint sequence characterization of sets 

which are, in a certain sense, approximately contained in order intervals of a 

Riesz space. While this result has its origins in the well-known Grothendieck and 

Dunford-Pet t is  characterizations of weakly compact sets in abstract L-spaces, 

we shall use it as a convenient tool in the study of compact operators on Banach 

lattices. 

We begin with a technical result which gives a basis for a new approach to the 

problem of extracting disjoint sequences. If E is a Riesz space and 0 =< w @ E, 

we shall denote  by Ew the order  ideal in E generated by w. If A is a subset of the 

Riesz space E, we shall write 

A d = { z :  z E E ,  ]z I ̂ [Yl = 0  for all y CA } .  

LZM~tA 2.1. Let E be a Riesz space. Let e, u E E § let {/,}~=1, g be positive 

linear functionals on E and let ~1 > O. There exists v E [0, u] such that g(u - v)  < 

~1 and 
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/ . ( x )  = sup{/ ,  (y):  y E [0, x] A (Eo + E~)} 

for  each  n = 1, 2 , . . .  a n d  for  each  x E E, .  

PROOF. Let  8 > 0  be such that  8g(e)_---~, and for  a E [ 0 , 6 ] ,  let v = =  

( u -  a e )  § let H,, be  the ideal in E gene ra t ed  by v,~, and for  n = 1, 2 , - . . ,  let 

~. ( o )  = inf{/,  (e - y):  y E [0, e] f"l (H~ + H~)}. 

W e  cla im that  there  is a n u m b e r  a E ]0, 8] such that  ~', ( a ) =  0 holds for  each 

n = 1, 2 , . . . .  Suppose  this is not  so. T h e r e  exists a n u m b e r  3' > 0 and a natura l  

n u m b e r  m such that  {a:  ~'., (a)=> 3'} is uncountab le  and so there  exists a strictly 

increasing sequence  {a.}~=, in ]0, 8] such that  ~',, ( a , )  => 3' for  each n = 1, 2 , . . . .  

Le t  8. > 0  be such that  o r . + 1 - a .  -> 8n+l+ 8n, SO that  the intervals  ] a . -  8., 

a .  + 6.]  are disjoint.  Now set 

y.  = e A 8 n l ( u  - -  a . e )  +, z.  = e A 8 : ' (U  -- a . e ) - ,  

u. = e - -  (y. + z . )  

so that  y.  ~ Ha.  and z .  E H~..  Now,  for  i < j 

8,u, ^ 8juj <= 8, ( e - y,) ^ 6j ( e - zj ) 

= (8,e - (u  - or,e)+) + A (Sje - (u - aie)-)+ 

_-< ((8, + a , )e  - u)  + ^ ((a, - 8,)e - u ) -  

= 0  

since o~, + 8, =< aj - 8j. So the sequence  {u,}7=1C [0, e] is disjoint  and 

~ f , . ( u , ) < - f . , ( e ) <  ~176 
i = i  

This is impossible  since f,. (u~) => st,. (a , )  _-> 3' > 0 holds for  i = 1, 2, .  �9 �9 

Let  now a E ]0, 8] be  such that  ~',. ( a )  = 0, m = 1, 2 , . . .  and set v = v~. Then  

g ( u  - v ) = g ( u  ^ ae ) <= 8g(e  ) <= 77. 

Suppose  now that  x E E .  +. T h e r e  exists a na tura l  n u m b e r  k such that  0 <- x <- ke. 

Given  e > 0 ,  and given the  natura l  n u m b e r  m, there  exist y, E E v  N [ 0 , e ] ,  

z,  ~ E~f ' I  [0, e] such that  

kf,, (e - (y, + z,))  < e. 

Sett ing y = x ^ ky~E Eo and z = x a k z ~ E  E~, we have  
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0 =< x - (y + z )  <= k (e  - (y, + z,)) 

so that ft, (x - (y + z)) =< e and the lemma follows. 

COROLLARY 2.2. Let E be a Riesz space, let e E E § and let {f.}.=~ be a 

sequence o/positive linear /unctionals on E. Let Uo, " ", u~ E E + be disjoint and let 

go , "  ", gp be positive linear/unctionals on E. Given ~7 > O, there exist vi E [0, uj] 

such that 

f , ( x )  = sup{f, (y): y E [0, x] n ( / 4 0 + ' "  + Hp + H)} 

for each x E E +, and each n = 1, 2 , . . . ,  where ~ denotes the ideal generated by vj 

and H = nj .~pH].  

PROOF. The proof is by induction on p. Given uo," �9 ", up choose Vo by Lemma 

2.1 and apply the inductive hypothesis to the shorter sequence u,, .  �9 up and the 

positive linear functionals f'. given by 

i f ( x ) =  sup(/ , (y):  y E [0, x] OHm,  x E E  § n = 1 , 2 , . . . .  

THEOREM 2.3. Let E be a Riesz space with an order unit and let {f,}~=l be a 

sequence of positive linear functionals on E. Let A C_ E be a solid set and suppose 

that e > 0 is such that for each non-negative integer p there exist disjoint elements 

Uo, u l , . . . ,  up E A § = A O E + such that sup.=-J, (uj) => e for every j <- p. For any 

6 < e, there exists a disjoint sequence {x.}7=1 in A + such that lira sup,_| (x,) _-> 

6. 

PROOF. Let 0 < 6' satisfy 0 < 6 < 6' < e. It clearly suffices to show that there 

exists 0 _-< z ~ A such that sup. / ,  (z) _-> 6' and such that, for each natural number 

p, there exist elements Uo," �9 ", up ~ A + n E~ such that sup .~J , (u j )  _--- 6' for each 

j _-< p. To this end, let the positive integer k be chosen to satisfy 

k (e  + 8')_-- > 26'(k + 1) 

and let rio," ", fik ~ A + be disjoint and such that sup.[ ,  (fij) _- > e for j _-< k. By 

Corollary 2.2, there exist elements Vo," ", v~ with vj E [0, t~j] such that 

sup [. (vj) -> 6 ', O<=]<=k, 

and 

/ . ( x )  = sup{f. (y): y E [0, x] n G} 

for all n = 1 ,2 , . . . ,  and all x • G where G = H o + " ' + H ~  + ( A j ~ H ~ ,  
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being the ideal generated by vj. We now make the following remark. Let 

0 =< w E E, let p be a given positive integer and suppose that sup,=~pf, (w) :> e. 

Then, there exists j with O<=j<k and w'Ef ' ] ,=jH~n[O,w] such that 

sup,=-pf, (w') => 6'. In fact, there exist Wo,.. ", wk, ~, with w, ~ H~ fq [0, w], 

E ("l~=oH~n [0, w] such that 

sup L ( W o + ' " +  wk + ~)_->�89 e). 
n ~ p  

Set w* = Wo + �9 �9 �9 + wk + ~, and observe that 

j = 0  i ~ 0  

It follows that there exists j with 0_-< j _-< k such that 

~,<k(~'+~)< k supra(w*) 
=2(k+l )=k+1.~ .  

~ sup f, ( ~  + ~] w,) 
n>-p i=O 

and so we may take 

k 

W'=~-t-  E W~. 
i = 0  

By choosing (finite) disjoint sequences in A of arbitrary length, it now follows 

from the above remark and the pigeon-hole principle, that for each natural 

number p, there exists j (p)  with O<=j(p)<k and disjoint elements 

Uo,... ,up~l"l~=j~)H~f3A + such that s u p . ~ J . ( u ~ ) > 6  ' for every i<=p. It 

follows that there exists io, with 0 _-< io < k such that j (p)  = io for infinitely many 

p. We may clearly take z = v~, and the proof of the Theorem is complete. 

If E is a Riesz space, we will denote by E -  the order dual of E ;  see [5]. 

THEOREM 2.4. Let E be a Riesz space, let {f.}~=l be a sequence in E -  and 

assume that each countable subset of E is contained in some principal ideal of E. 

Let A C E be a solid set such that 

(i) sUp,~Af,(X)<~ n = 1 , 2 , ' ' ' .  

(ii) l i m . ~ l f . [ ( x ) = O  for each x C A .  

(iii) lim.~| (x.) = 0 for each disjoint sequence {x.}7=~ in A +. 

Then l i m , ~ s u p , ~  Ifi [(x) = 0. 
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PROOF. We observe first that there is no loss in generality in supposing that 

fn => 0. Indeed, for n = 1 , 2 , . . .  

sup If.[(x)= sup If.(x)l 
x E A  x E A  + 

= sup{L(y): x E A ,  [y 1_-< x} 

= sup f ,  (y) < oo, 
y E A  

and so (i) is satisfied with f .  replaced by If- I- Again, if {xn} C A § is a disjoint 

sequence, there exist {y,} C A such that 

I f n l ( X n ) < = [ , ( y . ) + 2  -" and ly ,  J_-<x,, n = 1 , 2 , . - . .  

Since {y~+}, {y:} are disjoint sequences in A § it follows that lim,_| I (x , )=  0. 

Thus we may replace fn by I.fn I throughout and accordingly we will assume In => 0 

for the remainder of the proof. 

Suppose now that the result is false, so that there exists a sequence 

{y,,}~=l C A + such that lim.~| (y,) >0 .  

By passing to a suitable subsequence, we may assume that there exists e > 0 

for which 

0 < e = < f n ( y . )  and fn(~y , )_-<2-"e ,  n = l , 2 , . . . .  

For n = 1 ,2 ,3 , . . . ,  set c~, = supxEA/n(X)<00. Let p be a given natural number. 

Let k ( 0 ) = p  and choose k (1 ) , . . . ,  k(p) such that 

k (j) > k ( j  - 1), ,~-ku)+, < ,- aku-l) = e, 1 -< j --< p. 

Define, for 0 _-< j _-< p, 

( /" uj = Y~o)- 2~0) ~ yk(,)-i<,,p ~ 2-~~ " 

It is a simple calculation to verify that u, ^ uj = 0 if 0 =< i < j =< p and that 

fk0)(uj) > e for O_-<j _-<p. 

By assumption, there exists a principal ideal I C E such that {y,} C I f'l A. We 

may therefore appeal to Theorem 2.3 and part (iii) of the hypothesis of the 

present Theorem to obtain a contradiction and to complete the proof of the 

Theorem. 
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THEOREM 2.5. Let E be a Riesz space and let A C E, B C E ~ be solid sets. 

Suppose that every countable subset of E is included in some principal ideal o[ E. 

The following statements are equivalent. 

(i) supteB [f(x)l <oo ]:or every x E A,  sup,~A I / l ( x ) < o o  for every f ~ B and 

lim,_| I f (x . ) l  = o for every disjoint sequence {x,}7=1C A § 

(ii) For every e > O, there exists w E E + and h E E-+ such that 

( I f l ( l x l -w)+)<=e,  ( I f l - h ) + ( l x l ) < - e  

[or all x E A,  f E B .  

(iii) Same as (ii), but requiring w, h to be finite sums o[ elements in A +, B + 

respectively. 

(iv) supra8 I.f(x)l < oo [or every x ~ A,  sup,~A I.f(x)l < oo [or all l: E B, and 

lim._| If.(x)l = 0 for every disjoint sequence {],}7=1C B +. 

PaooF. (i) f f  (iii). Assume that (i) is true and let e > 0 be given. We show 

first that there exists w, a finite sum of elements of A +, such that 

Ifl(Ixl-w)+<-_-e f o r a l l f E B a n d x E A .  

Suppose no such w exists. There exist sequences {y,}7-1C A + and {/.}7=~ C B + 

such that 

- > e ,  n = 1 , 2 , . . . .  

Set z, = ( y , - 2 "  X~<,yi) + and define f ' ~  E -  by 

f ; (x)  = sup f ,  (x ^ kz . ) ,  x E E§ n = 1, 2 , . . . .  
k 

It follows that f'.((2" X,<.y, - y . )+)= 0 and so/ ' . (y , )  _-< 2-" / ' (y . )  holds for i < n. 

Set a .  = / ' ( y . )  and observe that 

a,>-_]:,(z,)>e, n = 1 , 2 , - . . .  

Define g. = ea, f"  and note that 0 < g. _-< f ,  holds for n = 1 , 2 , . . .  and that 

l im ,~ |  for each i =  1 , 2 , . . . .  Let now A1 be the solid hull in E of 

{yi}7-1. By assumption, A1 is contained in a principal ideal of E and so it follows 

from (i) and Theorem 2.4 that 

0 = lim sup g. (x) _-> lim inf g .  ( y . )  = e 

which is a contradiction. 
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To obtain the second part of condition (iii), we use a result of [7]. Let E~ be the 

ideal of E generated by A. The natural map T: E---->E( given by 

(T f ) (x )=f(x) ,  x E E , ,  f E E -  

is a Riesz homomorphism, for if x E E~ and f E E - ,  then 

I Tfl(x ) = sup{(Tf)(y): y E E~, ]y]=< x} 

= sup{f(y): y E E, ]yJ=<x} 

= T(If l )(x  ). 

Let B~ = T[B] C E-i and let F be the ideal in E1 generated by B~. If {x.}.=~ is 

any order bounded disjoint sequence in E~ then, by the Riesz decomposition 

property, it is a finite sum of disjoint sequences in A § so that 

lira sup Ig(x.)l = lim sup If(x.)l = o. 
n ~  gEB 1 n ~  f E B  

Also B~ is o'(E~-, E0-bounded since supt~B If(x)l < oo for every x E A. Accord- 

ingly, by Lemma 81 H of [7] there exists go E F § such that 

for allg E B,. 

Let h be a finite sum of elements of B § such that Th => go. We have then 

( ] f l -h )§  f o r a l l f E  B 

and so 

(If I -  h )+(I x l) < (lf] - h)+(w) + l f l ( I  x l -  w) + <= 2e 

for all f E B, x E A as required. 

The implication (iii) ~ (ii) is trivial. 

(ii) f f  (i). First note that if e > 0 is given and if w E E +, h E E -§ are such that 

Ifl(Ixl-w)§ (]fl-h)+(Jxl)<e for every x E a ,  f e B ,  then 

] f l ( lx l )_-  < e + l f l ( l x l ^  w ) =  < 2 e  + h( I x l ^  w) 

holds for all x E A, f E B. In particular, it follows that supmB.,~,~ I fl  (I x I )<  o~ 

and so the first part of (i) is satisfied. Next, if {x,}7.~ is a disjoint sequence in A § 

then 

sup I f(x.)l <= 2e + h (x. ^ w), 
, f~a 

However Y.7=, h(x, ^ w)<= h(w)<oo  and so 

n = 1 , 2 , . . . .  
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lim sup sup If(x,,)l <-2e 
n ~  f E B  

and this proves (i). 

(iv) ~ (i). If {x,}7=1 is any disjoint sequence in A § and {f,}7=~ is any sequence 

in B, define f', E B + via 

f ' .(x)=suplf,  l(x^kx,,), x E E  +, n = l , 2 , . . . .  
k 

It is easy to see that the sequence {.f'}~=l is disjoint and so 

1)m If. (x.)l----< 1)m If-I(x.) = l i m f ' ~ x . )  = O. 

As the sequence {f,}~=~ is arbitrary, it follows that l im,~supt~B [f(x,)[ = 0 as 

required. 

The proof of the implication (iii) :::> (iv) is almost identical to that of the 

implication (ii) ~ (i). By this, the proof of the Theorem is complete. 

We remark that the hypotheses of Theorem 2.5 are easily seen to be satisfied if 

the Riesz space E is a Banach lattice. In this special case, the Theorem coincides 

essentially with proposition 2.2 of [3]. However, the lack of any assumption of 

topological completeness in the present Theorem 2.5 introduces the technical 

difficulty which led to Theorem 2.3. 

For ease of reference in later sections, we now gather a number of simple 

consequences of Theorem 2.5 in the case that E is a Banach lattice. Here E '  

denotes the (Banach) dual of E. 

COROLLARY 2.6. Let E be a Banach lattice. A sequence {x.}7.~ in E is norm 

convergent to 0 iff 

(i) l i m . ~ f ( J x ,  1) = 0 for every f E E ' .  
(ii) lim,_| f ,  (x.) = 0 for each norm-bounded disjoint sequence {f. }7~1 in E'+. 

PROOF. It is clear that conditions (i), (ii) are satisfied if the sequence {x,} is 

norm convergent to 0. Conversely, suppose (i), (ii) hold. Observe that (ii) is 

equivalent to the apparently stronger condition: 

(ii)' l im,~| 1)= 0 for each norm-bounded disjoint sequence {f,}~=~ in 
Et+. 

Let e > 0  be given. By Theorem 2.5, there exists h E E '§ such that 

( I f l - h ) + ( I x ~ l ) < ~  for all f E E '  with Ilfll_-< 1 and k = 1 , 2 , . . - .  Thus 

[[x~ II = sup{f ( I  x.  I): f ~ E'+, Ilfll ~ 1} 
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<=e+h(x , ) ,  n = l , 2 , . . .  

and the result follows from condit ion (i). 

COROLLARY 2.7. Let E be a Banach lattice. A sequence {f.}7=~ in E '  is norm 

convergent to 0 iff 

(i) l i m , ~  If, [(x) = 0 for each x E E. 

(ii) l im,_= f,  (x,)  = 0 for each disjoint norm -bounded sequence {x, }7=~ in E +. 

The details of proof  are similar to those of Corollary 2.6 and are omitted.  

It is well known [25] that the norm on a Banach lattice E is order  cont inuous  

iff each o rde r -bounded  disjoint sequence  in E + is norm convergent  to 0. 

COROLLARY 2.8. Let E be a Banach lattice. The following statements are 

equivalent. 

(i) E has order continuous norm. 

(ii) I f  x o E E  + and e > 0 ,  there exists g E E '  such that (If[-g)+(Xo)<-_e 

whenever f ~ E '  satisfies [[f[[ _-< 1. 

COROLLARY 2.9. Let E be a Banach lattice. The following statements are 

equivalent. 

(i) The norm on E '  is order continuous. 

(ii) Iffo E E '§ and e > O, there is a y E E + such that fo([ x [ - y)+ _-< e whenever 

x ~ E and II x II--< 1. 
(iii) Each disjoint norm-bounded sequence in E is o'(E, E')  convergent to O. 

COROLLARY 2.10. Let E be a Banach lattice and let A C E be a bounded set. 

The following statements are equivalent. 

(i) Iim.~| whenever {f,}~=~ is a norm-bounded disjoint 

sequence in E '+. 

(ii) lim,~= II y~ II = 0 whenever {y,}7=, is a disjoint sequence in the positive part 

of the solid hull of A .  

(iii) For any e > O, there exist w ~ E§ h E E '+ such that 

[l([x 1-  w)+ll_-< e, ( [ f [ - h ) + ( l x [ ) < - e  

for all x E A and f ~ E '  with [Ifll---< 1. 

It is to be pointed out  that Theo rems  2.4, 2.5 cont inue to hold if the 
assumption 

(i) Each countable  subset  of E is conta ined in a principal ideal is replaced by 

any one  of the assumptions:  
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(ii) E has the principal projection property. 

(iii) E is Archimedean and B consists of normal integrals. 

(iv) E is almost Dedekind ~-complete and B consists of integrals.* 

(v) There is a Hausdortt locally solid, locally convex topology on E for which 

A is bounded, B C E '  (the linear topological dual of E)  and for which monotone 

order-bounded Cauchy sequences are convergent. 

(vi) There is a locally solid, locally convex topology on E for which A is 

bounded, B C E '  and whenever x ~ A + and U is a neighboruhood of 0, there 

exists z E [0, x] O U and a neighbourhood V of 0 such that V n [0, x] c [0, z]. 

Moreover, Corollary 2.2 and Theorem 2.3 also hold under assumptions (ii), 

(iv). (Of course, for the case of Theorems 2.3, 2.4 and Corollary 2.2, the set B is 

taken to be given sequence {f,}.) The proof of each version of Theorem 2.5 

follows the general pattern given above for the order unit case, although under 

assumptions (ii)-(v), more direct methods are available and it is not necessary to 

appeal to Theorem 2.1; see for example [3] in which Theorem 2.5 is given under 

assumption (iv), which also clearly covers the important special case of a Banach 

lattice. It is appropriate also to point out that the proof of Therorem 2.5 under 

assumption (v) is essentially the argument in [7], theorem 83 B which is used to 

discuss weak compactness in the duals of abstract M-spaces. 

It is upsetting that Theorems 2.4, 2.5 should appear in such a multiplicity of 

versions. We have been unable, however, to given a common proof for all 

versions. It is natural to ask whether Theorems 2.4, 2.5 are valid without any 

additional assumptions. This is not the case, as is shown by the following 

example: 

EXAMPLE 2.11. Let N, R denote the natural numbers, real numbers respec- 

tively. Let X = [0, 1] N and let E C R x be the Riesz subspace generated by the 

coordinate projections Xi : t ~ t( i) ,  i ~ N, t E X.  Define t~ ~ X for each i E N by 

taking t , ( i )=  1, t~(j) = 0 if i ~ j .  

Note first, that if x E E and i EN,  there exists a _->0 and a finite subset 

J C N\{i} such that 

(1) Ix - x(t~)X~l<--a ~ Xi.  

In fact the set of x E R"  which satisfies (1) is easily seen to be a Riesz subspace of 

R x which contains each X~. We note the following important fact about E. If 

' E is called almost Dedekind  o '-complete if it can be embedded  as a super-order-dense Riesz 
subspace of a Dedekind  tr-complete space. 
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C C E + is any disjoint set, there exists n ~ N such that x(t~) = 0 for every x E C 

and for every i > n. Suppose this is not so. Since {i: x(t~)#0} is finite for each 

x E E, there exists an infinite K C N and a disjoint family {y~}~e~ in E + such that 

y, (t~) > 0 for each i ~ k. For each i E k, let a~ -> 0 and J(i) C N\{i} be such that 

] y, - y, (t, )X, l _-< a, ~ Xj. 
/ e l ( i )  

Take any i E k and observe that as J(i) is finite, there exists k ~ K/J(i)  with 

k # i  and so k ~ J ( i ) U J ( k ) .  

Let t E X be such that t (k)= 1, 0 < t( i )< a~lyk (t~) and t ( y ) =  0 f o r / ' #  i, k. 

Then 

y,(t) = y,(t~)X~ (t) > 0, 

y~ (t) >-_ yk (&)Xk (t) - akX~ (t) > 0 

and so y~ 6 y~ # 0, contrary to hypothesis. 

If we take A to be the solid hull of {X,: i E N} and define f ,  by setting 

f . (x )  = x(t.), then lim.~| ( u , ) =  0 for every disjoint sequence {u.},eN 

in E*, lim,._~ f,. (x) = 0 for every x E E but lim,.--~ supx~Af,. (X) # 0. Moreover, 

it is easily seen that there is no w E E § for which I fro I ( I x l -  w)+<�89 holds for 

every m E N  and x E A .  

3. AMAL-compact  operators 

If E is a Riesz space, we will denote by E~ the band in E -  of normal integrals 

(order-continuous linear functionals). For further details see [7] or [14]. If E, F 

are Riesz spaces, we will denote by L - ( E ;  F)  the space of linear mappings from 

E to F which are expressible as the difference of positive linear mappings from 

E to F. If F is Dedekind complete, then L - ( E ;  F)  is a Dedekind complete Riesz 

space ([7], 16 D). The elements of L - ( E ; F )  will be called regular mappings. 

We begin with an elementary lemma. 

LEMMA 3.1. Let E, F be Riesz spaces and let F be Dedekind complete. For 

each 0 <= x E E and T, S E L - ( E  ; F), we have 

( I T l ^ l S [ ) ( x ) = i n f  I S I x i A [ T I x ~ ; n = l , 2 , " ' , x =  x,,O<x, E E  . 
i = l  

The proof of the lemma follows directly from 16 F of [7] and the simple 

identity 
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ITI A I S I = ~ { I T I + I S I - I I T I - I S I I } .  

We remark that the collection over which the infimum is taken in the above 

lemma is downwards directed. 

To formulate the main result of this section, we introduce first some notation. 

Let E be a Riesz space. If 0_-< x E E, we will denote by Ex the order ideal 

generated by x E E and we denote by ix the injection of Ex into E. If F is a 

Riesz space and O<=gEF -, write N, ={z E F :  g ( I z l ) = 0 }  and denote the 

quotient map of F onto F/N,  by/'~. We denote by (F; g) the completion of F/N,  

with respect to the norm I1" II induced by the map z ~ g(I z 1), z E F. We remark 

that (F; g) is an abstract L-space [7]. Finally, if E is a Riesz space, if F is a 

Banach lattice, and if 0=<x E E, then, without risk of confusion, a linear 

mapping S: Ex ~ F will be called compact if S ( [ -  x, x]) is a relatively compact 

subset of F. 

THEOREM 3.2. Let E, F be Riesz spaces and suppose that F is Dedekind 
complete. Let 0 <= x E E and let 0 ~ g ~ F2. Let 

G,~g = {T E L- (E;F) :  jg o Toi~ iscompact}. 

Then Gx.g is a band in L - ( E ; F ) .  

PROOF. It is clear that Gx.s is a linear subspace of L- (E;F) .  Suppose that 

~b~ C _C G,.8 is an upwards directed system and that C 1' To holds in L- (E ;  F). 
We show that ToE G,,s. Observe that {Tx: T E  C}1' Tox holds in F. Since 

g EF-d, there exists, for each e >0 ,  an element T, E C, for which 

g ( T o x -  T,x)<=e and so, for each z EE~ with 0=<z = x ,  

Jl(/, o To)z - ( / ,o  T . ) z  If--< I1(/, o T o - h O  T. ) (x) l l  

= g((To-  T~)(x)) 

Now, by assumption, jg o T, o ix ([ - x, x]) can be covered by finitely many e -balls. 

Thus Js o To ~ ix ([ - x, x]) can be covered by finitely many 2e-balls and so, as e is 

arbitrary, ]g o To ~ ix ( [ -  x, x]) is totally bounded in (F; g). Thus To E Gx.~. 

It remains to be proved that Gx.s is an order ideal in L- (E ;  F). To this end, we 

prove first that if S, T E L - ( E ;  F)  if [ S I ̂  I T[ = 0 and if S + T E G,.g then S and 

T both belong to G,~,. To this end, let 0 =< x E E, and let e > 0 be given. From 

the fact that g is a normal integral on F and by Lemma 3.1, there exist 

0 < x l ,  . . . , x .  E E with x = XTolx~ such that 
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If z E [O,x], then z = z l +  " "  + z,  with each z, E [O,x,]. Since $ + T E  Gx.s, it 

follows that for  1 _-< i _---n, there  exist finite sets Ai C [O,x,] such that for  every 

u E [0, x,] there  exists v E A~ with 

g ( l ( S  + T ) ( u -  v ) l ) <  -e . 
n 

In particular,  for  each z,, there  exists v, E A~ with 

g(I (S + T) ( z ,  - v,) l)  < e__ . 
n 

It follows that,  for  1 =< i =< n 

I S ( z , -  v , ) l < [ ( S  + T)(z ,  - o , ) l + l S ( z ,  - v,)l A [ T ( z , -  v,)l 

<=I(S + T ) ( z , -  v,) [+ [Six ,  ^ I TIx , .  

Let  now v = E7-1 v,. We  have 

IlJg oS oi~(z - v)l l=  g ( l S z  - Sv[ )  

<- g(IS(z,- 
i = l  

i ~ l  i = 1  

~ 2 e .  

If we now set A = { v : v = v ~ + - . . + v , ,  v ~ E A , , l _ - < i ~ n } , t h e n A C [ 0 ,  x ] i s a  

finite set and for each z ~ [0, x] ,  there  exists v E A with I[./, o S o ix (z - v)l I < 2e. 

As e is arbi trary,  it follows that S E G,. ,  and, at once, it follows also that 

T ~ G ~ .  
It now follows that G,.,  is a Riesz subspace of L - ( E ;  F) ;  for  if T E Gx., then 

T = T § + ( - T - )  and I T+I ^ [ - T-I  = 0, so T+ E Gx.,. Moreove r  if 0 =< T E Gx.,, 

and 0 =< R =< T satisfies R A ( T -  R )  = 0, then necessarily R E Gx.g. It follows 

f rom the Freuden tha l  spectral  t heo rem ([15], 40.2) and the first part  of the proof ,  

that  if T ~ Gx., and if 0 =< R =< T, then R E G,.g. The  proof  of the T h e o r e m  is 

complete .  

We wish to remark  that the proof  of T h e o r e m  3.2 presen ted  above  is a 
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simplification, due to A. R. Schep, of an earlier proof given by the present 

authors. 

It is now convenient to make the following definition. 

DEFINITION 3.3. Let E, F be Riesz spaces. A linear mapping T: E --* F will 

be called AMAL-compact iff whenever 0 =< x E E and 0 =< g E F, the bicomposi- 

tion h o T o i,: Ex ~ (F; g) is compact. 

We make first the simple remark that if E is an abstract M-space, and if F is 

an abstract L-space, then the class of AMAL-compact operators from E to F is 

precisely the class of compact mappings. Further, if E, F are Banach lattices, 

then each compact operator from E to F is AMAL-compact.  It is to be pointed 

out that each kernel operator in the sense of Nagel and Schlotterbeck [20] is 

AMAL-compact and it is not a difficult task to see that each kernel operator in 

the sense of Luxemberg and Zaanen [13] is AMAL-compact.  

With these remarks in mind, we give the following reformulation of Theorem 

2.2, which constitutes the principal result of this section. 

THEOREM 3.4. Let E be a Riesz space and let F be a Dedekind complete Riesz 

space. If  F -  C F2, then the regular AMAL-compact mappings from E to Florin a 

band in L - ( E :  F). 

PROOF. Denote by G the linear space of regular AMAL-compact mappings 

from E to F. In the notation of Theorem 3.2, it is clear that G = 

n { G ~ s :  x E E  § g E F-§ As each Gx.~ is a band by Theorem 3.2, it follows 

that G is a band and the proof is complete. 

Of course, the content of the preceding Theorem is most readily seen when E 

is an abstract M-space and F is an abstract L-space; in this special case, the 

Theorem asserts that the regular compact mappings from E to F form a band in 

L - ( E : F ) .  Our motivation for introducing the notion of AMAL-compact 

mappings is to reduce the study of compact mappings in more general Banach 

lattices to that of compact maps of abstract M-spaces to abstract L-spaces. This 

is very close to the point of view expressed by And6 [1] which is, in turn, related 

to earlier work of A. C. Zaanen [29]. 

4. PL-compact sets and operators 

For the remainder of the paper we shall restrict attention to Banach lattices. If 

F is a Banach lattice, we denote by F '  the topological dual of F. 

Let now F be a Banach lattice. Following [16], we say that a set A C F is 
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L-weakly compact if A is norm-bounded and IIY-]I --*0 as n---~oo whenever 

{y,}~_, is a disjoint sequence in the positive part of the solid hull of A. Such sets 

are characterized by Corollary 2.10. If E and F are Banach lattices, then 

following [18], a linear mapping T: E --* F will be called L-weakly compact if T 

maps norm-bounded sets of E to L-weakly compact sets in F. We make a 

further definition, using the notation of the previous section. 

DEFINITION 4.1. Let F be a Banach lattice. A set A _C F will be called 

PL-compact if jg (A) is relatively compact in (F; g) whenever 0 =< g E F'.  

If E is another Banach lattice, a linear mapping T: E ~ F will be called 

PL-compact iff {Tx: IIx II--< 1} is PL-compact. 

We now give a simple criterion for relative compactness of sets in Banach 

lattices with order continuous norm. (Cf. [12], lemma 1.1 and [16] kor. II.4.) 

THEOREM 4.2. Let F be a Banach lattice and let A C_ F. 

(a) I rA  is L-weakly compact and PL-compact, then A is relatively compact. 

(b) If A is relatively compact, then A is PL-compact. 

(c) If F has order continuous norm, then A is relatively compact iff A is 
L-weakly compact and PL-compact. 

PROOF. (a) Suppose that A _C F is L-weakly compact and PL-compact and 

let e > 0 be given. By Corollary 2.10 there exists 0 <= g E F' such that 

(Ihl-g)*(lyl)<<-e whenever y E A  andllh]l=< 1, 

since A is L-weakly compact. By PL-compactness of A, jg (A) C (F; g) is totally 

bounded and so there exist yo, �9 �9 ", y, E A such that, for each y E A, there exists 

i -< n such that IIJ~(Y - Y,)II --< e. In this case, 

[[y- y, ll = sup h( ly  -Y, I )  
Ilhl[~l 

-<- g(lY - Y, I) + sup ( l h l -  g)+(I y - y, I) 
Ilhllml 

~ lib (y - y,)ll + sup (Ih I -g )+ ( ly  I+ lY, I) 
lib II "~ 1 

= e + 2 e  

as both y, y~ belong to A. It follows that A can be covered by finitely many 

3e-balls; as e is arbitrary, it follows that A is totally bounded. 

(b) is an immediate consequence of the continuity of the maps h, 0 =< g E F'.  
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(c) Suppose now that F has order-continuous norm and that A C F is 

relatively compact. From Theorem 2.5 each norm-bounded disjoint sequence in 

F '  is tr(F',  F)  convergent to 0, and therefore converges to 0 uniformly on A. By 

Corollary 2.10, it follows that A is L-weakly compact. The remaining assertions 

of (c) are now consequences of parts (a) and (b). 

COROLLARY 4.3. Let E, F be Banach lattices. If  F has order-continuous norm, 

then a linear mapping T: E ~ F is compact iff T is L-weakly compact and 
PL-compact. 

We now give some sufficient conditions for the AMAL-compact  mappings 

introduced in the previous section to be PL-compact. We recall first the 

following notion introduced in [18]. If E, F are Banach lattices, a continuous 

linear mapping T: E ~ F will be called M-weakly compact if[ T maps norm- 

bounded disjoint sequences in E to sequences which converge to 0 in F. 

If E and F are Banach lattices and if T: E ~ F is a continuous linear map, it 

is a direct consequence of Theorem 2.5 that T: E ~ F is L-weakly compact 

(M-weakly compact) itt T': F ' ~  E' is M-weakly compact (L-weakly compact). 

These results are also proved in [18], satz 3. 

THEOREM 4.4. Let E, F be Banach lattices and let T: E ~ F be a continuous 

linear AMAL-compact mapping. I f  either (a) T is M-weakly compact or (b) 

T E L - (E ;  F) and E'  has order continuous norm, then T is PL-compact. 

PROOF. We observe first that if 0 -< g E F '  and e > 0, there exists 0 _-< Xo ~ E § 

such that 

g ( I T ( I x l - x o ) §  whenever fix 11 ~ 1 

for one of the following reasons: 

(a) If T is M-weakly compact, then Theorem 2.5 applied to the unit ball of E 

and the set {T 'h :h  E F', IIh II <= 1} yields the existence of 0 =< xoE E with 

go) +11 II I lT ( Ix l -  gl[ whenever IIx [[---- 1 

and this is clearly sufficient. 

(b) If T ~ L - ( E ; F ) ,  we may write T =  T1-7"2 with 0 < T1, T2 and set 

R = TI+ T2. Consider f = R'g. By Corollary 2.9, there exists 0 < Xo E E such 

that f((Ix [ - Xo) § _--< e whenever [[ x [[ _-< 1. Now 

g([ T ( I x l -  x0)+l)=< g ( R ( I x l -  Xo) +) = f((I x I -  Xo)+) --< e 
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whenever IIx II -< 1. 

Thus, under either assumption (a) or (b), there exists 0 ~ xo E E such that 

IIj~T(Ixl-xo)+ll<-_e whenever Ilx II_-< 1. 

If follows that h o T ( U  § C_jg o T([0, x0])+ e V  where U § is the positive part of 

the unit ball of E and V is the unit ball of (F;g) .  As ]s o T([0,Xo]) is totally 

bounded in (F; g) by assumption it follows that jg o T(U+), and hence ./s ~ T(U),  

is totally bounded. As g is arbitrary, T is PL-compact. 

We may now state one of the main results of the paper. 

THEOREM 4.5. Let E, F be Banach lattices and let 0<= T: E ~ F be compact. 

I f  E '  and F have order continuous norms, then every S E [0, T] C L - ( E ; F )  is 

compact. 

PROOF. By Corollary 4.3, T is L-weakly compact and PL-compact. Let 

S: E ---> F satisfy 0 =< S =_6 T. Clearly, S is L-weakly compact. By Theorem 3.4, S 

is AMAL-compact and so by Theorem 4.4, S is PL-compact. Again by Corollary 

4.3, it follows that S is compact. 

We remark that proposition IV, 10.2 of [25] and theorem 2.5.10 of [12] are 

special cases of the present Theorem 4.5. 

It is an immediate consequence of Theorem 4.4 above that if E and F are 

Banach lattices of which E '  has order continuous norm, then the class of regular 

PL-compact maps from E to F coincides with the class of regular AMAL- 

compact maps. In view of Theorem 3.4, we may state the following result. 

THEOREM 4.6. Let E, F be Banach lattices and suppose that E', F have order 

continuous norms. Then the set of regular PL-compact maps from E to F is a band 

in L - ( E ;  F). 

The preceding Theorem is not valid if the assumption that E '  has order 

continuous norm is omitted. (See Example 4.14 below.) However we can assert 

the following variant. 

THEOREM 4.7. Let E, F be Banach lattices. Suppose that F has order- 

continuous norm. Then the set of regular operators from E to F which map order 

intervals of E to relatively compact sets in F is a band in L - (E ; F). 

PROOF. We nee only observe that order bounded PL-compact sets in F are 

L-weakly compact since F has order continuous norm, and hence relatively 

compact by Theorem 4.2. Thus the stated class of mappings coincides with the 
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band of AMAL-compact  operators from E to F. 

We devote the remainder of the section to some examples and some results on 

PL-compact maps of complementary nature. These will supplement applications 

to be given in later sections. We begin with some examples of PL-compact sets in 

some familiar spaces. 

EXAMPLE 4.8. (a) In any abstract L-space, a set is PL-compact iff it is 

relatively compact. 
(b) If 1 < p < ~, a set in I p is PL-compact iff it is norm-bounded. 

In fact, this is an immediate consequence of the reflexivity of I p, 1 < p < oo, and 

the fact that weakly convergent sequences in l P, 1 < p < oo, converge uniformly 

on order intervals of I p', where 1/p'+ 1/p = 1. (See also Theorem 7.3 below.) 

(c) If X is a measure space of finite magnitude and l < p  <oo, a set 

A C_LP(X) is PL-compact if[ A is norm-bounded in LP(X) and relatively 

compact in LI(X).  

Indeed, this is a direct consequence of the fact that if e > 0 is given and 

O<-_g ELq(X) where 1/p+l/q = 1, then g may be written in the form g = 

g l+  g2, where IIg,llo< oo and Ilgzllq <= e. 

(d) If X is a compact Hausdortt  space, and A C C(X) is I1" II| then 

the following statements are equivalent. 

(i) A is PL-compact. 
(ii) Every sequence in A has a subsequence which is pointwise convergent on 

X. 
(iii) Every sequence in A has a subsequence which is tr(C, C')-Cauchy. 

For the proof of this statement, we remark first of all that the implication 

(iii) ~ (ii) is obvious and that the implications (ii) ~ (iii), (ii) ::> (i) follow from 

the Riesz representation theorem for C'. For the implication (i) ~ (ii), observe 

that if A is PL-compact, then for any finite Radon measure/~ on X and for any 

sequence {x,}7~ in A, there is a subsequence {y,}7~C{x~}7~l such that 

f lY- - Yn+~l d~ _-< 2 -n for n = 1, 2 , . . . .  It follows that any pointwise cluster point 

of {yn}7-~ is a /x-measurable cluster point of {xn}7-1. It is now a consequence of 

[2], theorem 2F, (v) ~ (ii), that every sequence in A has a pointwise convergent 

subsequence, as required. 

We turn now to the question of dual characterizations of PL-compact 

mappings. 
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THEOREM 4.9. If E and F are Banach lattices, a continuous linear operator 

T: E ---> F is PL-compact if/T' maps order bounded sets in F' to relatively compact 

sets in E'. 

PROOF. Let 0 =< g ~ F'. By the well-known Schauder Theorem, the mapping 

h o T :  E ~ ( F ; g )  is comapct iff the mapping T'o/;:  ( F ; g ) ' ~ E '  is compact. 

However, the mapping/~: (F; g ) ' ~  F ;  maps norm-bounded sets in (F; g)' to 

order bounded sets in F~ and the result follows. 

THEOREM 4.10. Let E, F be Banach lattices and let T ~ L - ( E  ;F). 

(a) If T is PL-compact and F" has order continuous norm, then T': F'---> E'  is 

PL-compact. 

(b) If T' is PL-compact and E'  has order continuous norm, then T is 

PL-compact. 

PROOF. (a) From Theorem 4.6, T 'E  L- (F ' ;E ' )  is AMAL-compact and so 

PL-compact by order continuity of the norm on E", by Theorem 4.4 (b). 

(b) It suffices to show that T' maps order intervals of F '  to relatively compact 

sets in E',  by Theorem 4.6. Since T' ~ L-(F'; E'), T' maps order intervals of F'  

to order-bounded PL-compact sets in E'. However, order bounded sets of E '  are 

L-weakly compact since E '  has order continuous norm, and the result follows 

from Theorem 3.2 (a). 

We now give some simple examples to show that the hypotheses of some of 

the preceding results may not be omitted. 

EXAMPLE 4.11. The identity map I: Co--+ co is PL-compact (see Theorem 7.3 
below) but I '  and I" are not and so the assumption that E" has order continuous 

norm cannot be omitted from Theorem 4.10 (a). 

EXAMPLE 4.12. If we define T: I~-*L~([0,1]) by writing Ten=~p,+dpo, 

where {en}~l is the usual basis of I t and ~bn is the nth Rademacher function (see 

[24] chap. IV, ex. 14), then T is not PL-compact. However, if g E L| 

satisfies [] g ][| 1, then T'g E l | may be written in the form T'g = y + z where 

y E 12 satisfies 11Y 112 --< 1 and z ~ l | is a constant sequence. By the criterion of 

Example 4.5 (d) (or otherwise) T' is PL-compact, and so the assumption that E '  

has order-continuous norm cannot be omitted from Theorem 4.10 (b). 

EXAMPLE 4.13. If {l~}~-1 denotes the usual basis in 12 and if {~n}~-~ denotes 

the Rademacher system in L2[0,1], define T: 1 2 ~ L  2 by writing Ten = ~pn, 

n = 1, 2 , . . . ,  then T': L2---~ 12 is PL-compact but T is not PL-compact. However, 

T is not regular. 
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EXAMPLE 4.14. Denote  by {/,}~, the usual basis in 11 and by {~b,}~=l the 

Rademacher  system in L2[0,1]. Define T: l I ~ L 2 [ 0 , 1 ]  by setting Te, = ok,, 

n = 1, 2 , . . . .  Then T is regular and a simple calculation shows that T+(e,) = ck+, 

and that T-(e . )  = $2 for n = 1, 2 , - . . .  Moreover  T is not compact, I TI is of rank 

one and so from T = T §  -, J T I = T §  - it follows that T § T-  are 

non-compact, as may also be seen directly. It is a consequence of the Schauder 

Theorem that the operators (T§ ', (T-) '  : L2[0, 1] ~ l | are non-compact positive 

operators majorized by the rank one operator I TI'. It follows that neither the 

assumption that E '  have order continuous norm, nor the assumption that F have 

order continuous norm may be omitted in Theorem 4.5. 

5. Compact operators 

It is the aim of this section to exploit systematically the ideas introduced in 

earlier sections to give general criteria for compactness of operators in Banach 

lattices. In so doing, we hope to clarify the relationship of various criteria already 

present in the literature. 

We first make some remarks concerning a condition introduced in [21]. 

THEOREM 5.1. Let E, F be Banach lattices. Assume that F has order continu- 

OUR norm. I f  0 _-< T E L - ( E ;  F), then T is M-  weakly compact iff the operator norm 

is order continuous on [0, T] _C L - ( E ;  F). 

PROOF. (a) Suppose that T is M-weakly compact, and that ck~ C ~ 0 in 

[0, T]. Let e > 0 be given. As in the proof of Theorem 4.4 (a), there is an Xo E E § 

such that II T(Ix  I -  Xo)+ll =< e whenever IIx II =< 1. Now {Rxo: R E C} J. 0 in F and 
the norm on F is order-continuous, so there is an R E C with IIRxoll<=e. It 

follows that 

II Rx II II R (I x I)11--< II Rxoll § II R (I x I -  Xo) § II--< 

whenever JJ x IJ --< 1. Thus Jl R JJ _-< 2e and it follows that infR~c fl R U = 0, as re- 

quired. 

(b) Suppose now that the norm of L - ( E ;  F)  is order-continuous on [0, T], and 

that {x,}7=l is a norm-bounded disjoint sequence in E +. We may define 

T, E [0, T] for n = 1, 2 , . . . ,  by setting 

T.x = sup T(x A kx.) ,  x E E § 
k 

(cf. [7], 31 B). It is easily seen that T, ^Tm = 0 if m ~ n so that 
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lira II Tx, l[ = lira ]l T,x. II--< IIT. U = 0. 

It has been noted earlier that if E, F are Banach lattices and if T: E ---> F is a 
continuous map, then T is L-weakly compact (M-weakly compact)  iff T' is 
M-weakly compact (L-weakly compact). For the case that T is regular, some 
additional information may be given. 

THEOREM 5.2. Let E, F be Banach lattices and suppose that E '  and F have 

order-continuous norms. I [ T  E L - ( E ;  F), then the [ollowing statements are 

equivalent. 

(i) T is L-weakly compact. 

(ii) T is M-weakly compact. 

(iii) T' is L-weakly compact. 

(iv) T' is M-weakly compact. 

(v) l im,~| O whenever {x.}7=1, {g.}:=x are norm-bounded disjoint 

sequences in E + and F '§ respectively. 

PROOF. The equivalences (i) <=> (iv), (ii) r (iii) have been noted above. It is 
clear that both (ii) and (iv) imply (v). We prove first that (v) => (ii). Indeed 

suppose (v) is satisfied and that {x,}7,=1 is a disjoint norm-bounded sequence in 
E § Note first that xn --->0, cr(E,E') by Corollary 2.9 so that I TIx ,  --->0, or(F, F ' )  
as n---> ~. By Corollary 2.6, it follows from (v) that limn~| Tx, II = 0. 

The proof that (v) f f  (iv) is similar to that of the implication (v) ~ (ii), using 
Corollaries 2.7, 2.8 instead of Corollaries 2.6, 2.9 and the proof is complete.  

We are now in a position to present a criterion for compactness of regular 
operators. 

THEOREM 5.3. Let E, F be Banach lattices and suppose that E', F have order 

continuous norms. I f  T: E ---> F is regular and AMAL-compact, then the following 

statements are equivalent. 

(i) T is compact. 

(ii) T is L-weakly compact. 

(iii) T is M-weakly compact. 

(iv) l im,~| 0 whenever { x , } ~ ,  {g,}:=~ are disjoint norm bounded 

sequences in E § F '§ respectively. 

I f  in addition T >= O, we may add 

(v) The norm o[L  -(E ; F) is order continuous on [0, T]. 

PROOF. The proof is a synthesis of preceding results. 
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We have noted earlier that kernel operators in the sense of Luxemburg and 

Zaanen [13] are AMAL-compact. In this way, the equivalence of statements 

(i)-(iv) of the preceding Theorem 5.3 provides an extension of theorem 7.3 of 

[13]. 

Let now E, F be Banach lattices. In [20], Nagel and Schlotterbeck introduce a 

class of abstract kernel operators from E to F. These abstract kernel operators 

are defined to be the set of regular mappings T: E ~ F for which all bicomposi- 

tions h ~ T o ix, x E E§ g E F '§ are nuclear. We note that such mappings are 

clearly AMAL-compact. Under certain conditions, it is proved in [20] that the 

set of abstract kernel operators coincide with the band generated in L - ( E ;  F) by 

the finite rank mappings from E to F and that this band consists precisely of 

those regular maps from E to F which may be represented by kernel operators 

with kernels defined on the structure spaces of E and F. That this representation 

theory, while of independent interest, may be avoided in a discussion of 

compactness is a consequence of Theorem 3.5, which asserts that, provided F 

has order continuous norm, then each regular map in the band generated by the 

finite rank maps from E to F is already AMAL-compact. Similarly, each regular 

map from E to F which lies in the band generated by the regular compact maps 

from E to F is AMAL-compact. It is to be pointed out in this connection that 

there are positive compact maps on L2([0,1]) which do not lie in the band 

generated by the finite rank maps (see [8]). With the above remarks in view, the 

proof of our next result is clear. 

COROLLARY 5.4. Let E, F be Banach lattices. Let E', F have order continuous 

norms and suppose that T: E---> F is regular. 

I f  either 

(a) T belongs to the band generated by the finite rank mappings from E to F; or 

(b) 0 _-< [ T[ _-< [ S [ for some regular compact operator S: E ---> F 

then the conditions (i)-(iv) (respectively (i)-(v) if T >-O) of Theorem 5.3 are 

equivalent. 

We remark that part (a) of the above Corollary 5.4 extends the compactness 

criterion of Nagel and Schlotterbeck [21], satz [5]. (See also [25], ch. IV.) 

We turn now to the question of compactness of continuous, rather than 

regular, mappings. Our main result in this direction uses the notion of PL- 

compact rather than AMAL-compact mappings and the interested reader may 

wish to observe the similarity of the following Theorem to theorems 3.3, 3.4 and 

3.5 of [12]. 
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THEOREM 5.5. Let E, F be Banach lattices such that E', F have order 

continuous norms. If  T: E ~ F is a continuous linear mapping, then the following 

statements are equivalent. 

(i) T is compact. 
(ii) T is L-weakly compact and PL-compact. 

(iii) T' is L-weakly compact and PL-compact. 

(iv) T and T' are both PL-compact and l i m , ~ g , ( T x , ) =  0 whenever { x , } ~  

and {g.}7~ are norm-bounded disjoint sequences in E +, F '§ respectively. 

PROOF. The equivalences (i)r162 (ii)r (iii) follow from Corollary 4.3 and 

Schauder's Theorem. It is clear that (ii) and (iii) together imply (iv) since (iii) 

implies that T is M-weakly compact. 

It remains to prove the implication (iv) ~ (iii). To this end, suppose that T 

satisfies (iv) and that {x~ is a norm bounded disjoint sequence in E § Observe 

first that I Tx,, I ~ 0 ,  o'(F,F') as n ~ .  In fact, suppose this is not true. Taking a 

subsequence if necessary, we may suppose that 0 =< g E F '  and e > 0 are such 

that g(ITx. I)>=3e for n = 1 , 2 , . . . .  Now T is PL-compact, so the sequence 

{/'~(Tx.)}~=~ is relatively compact in ( F ; g )  and there is a strictly increasing 

sequence {n(i)}T~ such that 

lim g(I Tx, o}- Tx~o)l) = O. 

Fix k such that g(ITxno)-TX.(k)])<=e for every i =  > k. Let h be such that 

I h I --< g and h (Txnr _-> 2e. Then 

h (Txno)) >= 2e - h (Tx .~)-  Tx.r 

=> 2e - g(I Tx.,k)- Tx,,,~l) 

=>e for all i=>k 

and this contradicts the fact that x , ~ O ,  tr(E,E') as i ~ o o  (as E' has 

order-continuous norm). Thus it follows that I Tx, I ~  O, tr(F, F')  as n ~ oo. The 

rest of condition (iv) now implies that limn~| II = 0,  by Corollary 2.6. It 

follows that T is M-weakly compact and so T' is L-weakly compact, as required 

and the proof is complete. 

6. Dunlord-Pettis operators 

If E and F are Banach lattices and T: E ~ F is a continuous linear map, then 

T will be called a Dunford-Pettis  operator if T maps weakly compact sets in E 
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to (norm) compact sets in F. The main result of this section is that the 

Dunford-Pettis operators in an abstract L-space coincide with the band of 

AMAL-compact operators. 

We observe first that AMAL-compact operators have some properties 

reminiscent of weakly compact operators in abstract L-spaces. 

THEOREM 6.1. Let E, F be Banach lattices. 

(a) Each continuous AMAL-compact operator from E to F maps L-weakly 
compact sets in E to PL-compact sets in F. 

(b) If  F has order-continuous norm, then each regular AMAL-compact 

operator from E to F maps L-weakly compact sets in E to relatively compact sets in 
F. 

PROOF. The proof of (a)is a simple modification of the proof of part (a) of 

Theorem 4.4 and is accordingly omitted. 

(b) Suppose F has order-continuous norm and let T: E--~ F be regular and 

AMAL-compact. It suffices to consider only the case that T _-> 0. Let A C E be 

L-weakly compact and let e > 0. There exists 0 _-< x0 ~ E and 0 =< g E F'  such 

that whenever x E A and f E F'  with Ilfll--< 1, it follows that 

+ E E 

I[([x[-xo) [I<21[TI[ and ([fl-g)§ 

(by Corollaries 2.10 and 2.8). Thus 

[[(I Tx [-  Txo)§ <= [[ T(lx  l -  Xo)+ll < 2 

and 

E 
( I f [ -  g)*([ Tx O) <-- ~+ ( I f l -  g)§ Z x l -  Txof  <- e 

hold for all x E A, f ~ F'  with [If I[ --< 1, and it follows from Corollary 2.10, that 

T(A)  C F is L-weakly compact. By part (a) above T ( A )  is PL-compact and so 

by Theorem 4.2, T(A)  is relatively compact in F and the proof is complete. 

If E is an abstract L-space, then each continuous T: E ~ E is regular ([7], 26 

E). Further, order intervals in E are weakly compact. Consequently each 

Dunford-Pettis operator in L ( E ; E )  is AMAL-compact, by definition. That 

each AMAL-compact operator in an abstract L-space is Dunford-Pettis is the 

content of Theorem 6.1 above. These remarks constitute the first part of the 
proof of the following assertion. 
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COROLLARY 6.2. If  E is an abstract L-space, then the Dunford-Pettis 

operators in E form a band in L - ( E ; E )  which contains the weakly compact 

operators. 

The proof of Corollary 6.2 is, of course, completed by remarking that each 

weakly compact operator in an abstract L-space is a Dunford-Pettis operator. 

While this is a well known result, we wish to give a proof which is in the spirit of 

the present paper. We remark that an entirely analogous proof may be given for 

abstract M-spaces. For different approaches using Banach lattice techniques, the 

reader is referred to [28] and [26]. 

THEOREM 6.3. Let E be an abstract L-space. Each weakly compact operator in 
E is a Dunford-Pettis operator. 

PROOF. Let {xn}7=~ C E satisfy x, -~ 0, tr(E, E') and let {fn}7=l C E '  satisfy 

f. --~0, tr(E', E"). It suffices (see [11], proposition 2) to show that f, (x,)---~ 0 as 

n--~ ~. It is a simple (but not elementary) observation that If, I---~ 0, tr(E', E") 

since E '  is an abstract M-space. Let e > 0  be given. Since E is an abstract 

L-space, then by [7], lemma 83 A, there exists O<=xoEE such that 

II(Ix, I -  Xo) § < e for n = 1 ,2 , . . . .  We have then 

If,,(x.)l <-Ifn I(x0) + e sup, Ill, II 

and the result follows. 

We remark finally that Theorem 6.1 (b) above contains theorem 5.9 of [12]; 

see also [9], theorem 4.5. 

7. On theorems of And6, Pitt and Rosenthal 

The results of this section are, in large measure, inspired by the paper [1] of T. 

And6, who studied compactness criteria for kernel operators in Orlicz spaces. 

The main theorem of [1] has subsequently been extended to the setting of 

Banach function spaces by J. J. Grobler [10] and it is our purpose to show in this 

section that the results of And6-Grobler are readily amenable to the techniques 

of previous sections; at the same time we give some new proofs of some results 

of H. P. Rosenthal [24] concerning compactness of continuous operators 

between LP-spaces. 

We recall first some notions concerning indices in Banach lattices, which go 

back to the work of T. Shimogaki [27]. It is appropriate to point out the related 

work of B. Maurey [16]. The reader's attention is also drawn to the paper [19] of 
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P. Meyer-Nieberg, and the references contained therein. We will adopt the 

following terminology which is given in [6]. 

DEFINITION 7.1. Let E be a Banach lattice and let 1 < p =< oo. 

(a) E is said to have the/P-composit ion property if[ whenever {x,} C E + is a 

disjoint sequence for which the sequence {llxoll}~/p, it follows that 

sup, I l x l + " "  + x~ll < ~. 
(b) E is said to have the/P-decomposit ion property in {llxo II} ~ lp whenever 

ix,} C E § is a disjoint order bounded sequence. 

(c) The upper index o'(E) is defined by 

o'(E) = inf{p _-> 1: E has the I p decomposition property}. 

The lower index s ( E )  is defined by 

s ( E )  = sup{p => 1: E has the I p composition property}. 

We now gather for ease of reference a number of results concerning indices 

that we shall need in the sequel. Let E be a Banach lattice. 

(a) l<=s(E)<-_o(E)<=~. If l < = p < s ( E ) ,  then E has the /P-composition 

property; if t r ( E ) <  q =< ~, then E has the /q-decomposition property. 

(b) For 1 < p < ~, the following statements are equivalent: 

(i) E has the /P-composition property. 

(ii) For any disjoint norm-bounded sequence {x,} C E, there is a continuous 

linear operator T: I p ~ E such that Ten = x,, where {en} is the usual basis of I p. 
(iii) There is a constant M > 0 such that 

for every finite disjoint sequence {xl, 1 _-< i N n} in E § 

(c) s (E) - '  + cr(E')-' = ~r(E) -1 + s (E ' )  -1 = 1 (with the usual convention that 

~-1 -- 0). 

(d) If ~r (E)<  ~, then E has order continuous norm; if s ( E ) >  1, then E '  has 

order continuous norm. 

It is in order to make some comments concerning the proofs of statements 

(a),-(d) preceding. Statement (a) is immediate while (d) is a simple consequence 

of the standard characterization of order-continuous norms; see [5], theorems 

2.3, 2.5. Concerning (b), it is clear that ( i i i ) ~  ( i i ) ~  (i). The implication 

(i) ~ (iii) is contained in [191, kor. III.7; we remark that another proof may be 

obtained by using Lemma 2.1 and the argument of [6], theorem 2.12. It follows 
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from theorem 2.15 of [6] that s(E')-' + o ' (E)  -1 = 1. On the other  hand, the proof 

of theorem 2.16 of [6] combined with (b) above makes it clear that E has the 

/P-composition property iff E' has the /q-decomposition property. It follows 

simply that s(E) -~ + ~r(E') -1 = 1, and statement (c) above follows. 

We now prove a technical result which is the essence of the main result of T. 

And6 [1]. In this connection, the reader is also referred to lemma 3.1 of [12] and 

to [10], theorem 4.2. 

THEOREM 7.2. Let E and F be Banach lattices and let T: E--+F be a 

continuous linear map. If  cr(F)<s(E),  then l im,o~g,(Tx, )=O whenever 
{xn}7=l, {g,}7=l are norm -bounded disjoint sequences in E § and F '§ respectively. 

PROOF. Note first that c r ( F ) < ~  and s ( E ) > l  and so E ' ,  F have order 

continuous norms. It follows from Corollaries 2.8 and 2.9, that if {x,}7=~ C E and 

{g.}7=~ C F '  are norm-bounded disjoint sequences, then x,--+0, cr(E,E') and 

g,--+O, o'(F',F) as n--+oo. 

Suppose now that the Theorem is false. Using the preceding remarks and 

passing to a subsequence if necessary, we see that there must be e > 0  and 

disjoint sequences {x.}7=~ C E § and {g,}7=~ C F '+ such that 

IIx. ll=llg~ l, Ig.(Tx,)l>-_e >O, n = 1 , 2 , . . .  

and 

Ig,(Zx,)l<=2 -", Ig,(Tx,)l<=2 -", for i < n .  

We may clearly suppose that each g, (Tx,) is of the same sign. 

Now, setting p = s(E) and q = s(F'), we see that 

1-+ 1-< o-(F)- l+ q-~ = 1. 
P q 

It follows that there are r _-< p and s < q such that 1/r + 1/s < 1 and there exist 

{a,}7--~(E(l') +, {r such that s = +oo. Consider hk = 

s 13jg s E F' and x = s a,x~, which exists in E since E has the / ' -compos i t ion  

property. It follows that 

j = l  "= 

k 

j = l  i~i  
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(where a = sup, a, and /3 = supjflj) 

2 ~ e Y~ ajCtj - 2ar m 2 -~' 
j f f i l  m ~ l  

-~oo as k -~ oo. 

However F '  has the I s-composition property so lim~_~ h~ exists in F' .  This yields 

a contradiction and the proof is complete. 

We remark first that in view of Theorem 5.3, the main compactness result of 

And6-Grobler  ([10], theorem 4.2) is a direct consequence of the present 

Theorem 7.2. The usefulness of Theorem 7.2 is that, in combination with 

Theorem 5.4, the study of compact operators from E to F may be reduced to 

questions about operators into abstract L-spaces. 

We recall that an Archimedean Riesz space F is called discrete if every 

non-zero ideal contains an atomic element. See [15], ex. 37.22. 

THEOREM 7.3. Let E, F be Banach lattices. Suppose that E '  and F have order 

continuous norms. I f  F is discrete, then every continuous linear map from E to F is 

PL-compact. 

PROOF. Let E, F satisfy the given conditions, let T: E - ~  F be a continuous 

linear map, and let 0 _-< g E F' .  In the notation of section 3, it suffices to show that 

Js ~ T: E --~ (F; g) is compact. Note first that ]s ~ T maps order intervals of E to 
relatively weakly compact sets of (F; g), since (F; g) is an abstract L-space. This 

is an immediate consequence of a well-known theorem of Grothendieck [11] (or 

see [4]). Since F is discrete and since F has order-continuous norm, it follows 

that (F; g) is discrete also. Therefore relatively weakly compact sets in (F; g) are 

relatively compact by [5], theorem 4.7. 

Thus is ~ T: E --~ (F; g) is AMAL-compact.  By Theorem 4.4 (a) to show that 

j, o T is PL-compact, it suffices to show that ]s ~ T is M-weakly compact. Since E '  

has order continuous norm, disjoint norm-bounded sequences in E are weakly 

convergent to 0 by Corollary 2.9. Again by [4], theorem 4.7, it follows that ]s ~ T 

maps disjoint norm-bounded sequences in E to sequences which converge to 0 

in (F: g) and so T is M-weakly compact. The proof is complete. 

We shall need the following result, whose proof is well known (cf. [22], pp. 

236-237). It is also a consequence of theorem A2 of [24], being the special case 

treated at the bottom of p. 208 of [24]. 

LEMMA 7.4. I f  2 < p < oo and T : lP --~ H is a continuous linear map, where H 
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is an abstract L-space, then inf, II re .  II = o, where {e.}:=l is the usual basis of l p. 

COROLLARY 7.5. Let E be a Banach lattice and let H be an abstract L-space. 

I,f s ( E ) > 2 ,  then every continuous linear operator T: E - - ~ H  is M-weakly  

compact. 

PROOF. Suppose that T: E ~ H  is not M-weakly compact. There is a 

norm-bounded disjoint sequence {Xn}:=IC E § such that inf ,  ]]TxnII >0 .  As 

s ( E ) > 2 ,  there is a finite p > 2  such that E has the /P-composition property. 

Accordingly, there exists a continuous linear map S: I p --* E for which Se. = x,, 

n - - 1 , 2 , . . ,  where {e.}7=1 denotes the usual basis in I p. It follows that 

TS: l ~ --*H is a continuous linear operator such that inf, II TSe, tl >0 ,  which 

contradicts Lemma 7.4. 

We come now to the principal goal of this section. 

THEOREM 7.6. Suppose that E and F are Banach lattices with or(F) < s(E).  

Suppose either 

(oz) E '  and F are both discrete. 

(f3) F is discrete and or(F)< 2. 

('y) E '  is discrete and s ( E ) >  2. 

Then every continuous map T: E --* F is compact. 

PROOF. The relation or(F) < s (E)  implies that or(E) < oo and s (E)  > 1 and so 

E' ,  F have order continuous norms. 

(et) We first prove (et) for the special case that E = I p for some p < oo. Thus 

suppose F is discrete and let T: l ~ ---~F be a continuous linear map. By 

PL-compact. 7.3, T is Pl-compact. At the same time, E '  is discrete and E ' ,  E"  

have order continuous norms since or(F")-- or(F)< oo. Again by Theorem 7.3, 

T': F'---> E '  is PL-compact. By Theorem 7.2 and Theorem 5.5, it follows that T 

is compact. 

To prove case (or) in general, we consider T'. Since T is PL-compact by 

Theorem 7.3, it suffices, in view of Theorems 5.5 and 7.2, to show that T is 

L-weakly compact, by Corollary 4.3. Observe first that or(E')<s(F') .  Let 

{g,}~=a be a norm-bounded disjoint sequence in F '§ and suppose that or (E ' )<  

p < s ( F ' ) .  There is a continuous linear map S: I P ~ E  ' defined by Sen =g,,  

where {en}~=~ is the usual basis of I v. The map T'S: l ~ -o E '  is continuous and so 

compact by what was proved above. Since {e.}---> 0 weakly in I p, it follows that 

II T'g. II = II T'Se  II--,0 as n ~ oo. Thus T' is M-weakly compact and so T is 
L-weakly compact and the proof of (ct) is complete. 
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(13) We show first that T is L-weakly compact. To this end, let {g,}~=l C F '§ be 

a norm-bounded disjoint sequence. By Theorem 7.2, the sequence {T'g.} C E '  
converges to 0 uniformly on each norm-bounded disjoint sequence in E § Now 

s(F') > 2 and so, for any x E E § jx ~ T': F ' ~  (E; x) is M-weakly compact by 

Corollary 7.5, as (E ;x )  is an abstract L-space. It follows that {IT'g.I} is 

o-(F*, F) convergent to 0 and so I] T'g, [I ~ 0 as n ~ oo by Corollary 2.7. Thus T' 

is M-weakly compact and so T is L-weakly compact. By Theorem 7.3, T is 

PL-compact and the proof is complete by appealing to Corollary 4.3. 

(30 This case follows from (13) by duality. By this, the proof is complete. 

We remark that the condition "E '  discrete" of parts (a), (3') of the preceding 

Theorem is satisfied if, for example, E is discrete and has order continuous 

norm. 

When E and F are /P-spaces, the above Theorem 7.7 (c 0 is given in [22]. A 

stronger version when E, F are LP-spaces is given in [24]. The method of proof 

given in [24] is based on a result of Kadec and Pelczynski concerning weakly 

convergent sequences in L p for 2 < p  < oo. It is obvious that our approach is 

entirely different and it is our hope that the vector lattice methods of this paper 

yield a clearer understanding of which properties of LP-spaces are essential for 

the result. 

The behaviour of the index 2 exhibited in the previous Theorem does not 

occur if attention is restricted to regular operators. This is the content of the final 
result presented. 

THEOREM 7.7. Let E, F be Banach lattices. Suppose tr(F) < s(E). 
(a) Every T ~ L - (E ;  F) is L-weakly compact and M-weakly compact. 
(b) The set of compact operators in L - ( E ; F )  is a band in L - ( E ; F ) .  

(c) If  either E'  is discrete or if F is discrete then every operator in L - ( E  ; F) is 
compact. 

PROOF. 

(a) Follows immediately from Theorems 5.2 and 7.2. 

(b) Follows from (a) by Theorems 5.3 and 3.5. 

(c) Follows from (a) by Theorems 7.3 and 5.3. 

In conclusion, we remark that statement (a) of the preceding Theorem was 

noted in [18] for the case of LP-spaces. 
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